输出模块 1794-VHSC AB罗克韦尔 维护方便
1756-A10 1756-A13 1756-A17 1756-A4 1756-A7 1756-BA1 1756-BA2 1756-BATA | 1756-IF16 1756-IF16H 1756-IF8 1756-IF8H 1756-IF8I 1756-IF6I 1756-IF6CIS 1756-IT6I
| 1794-IM16 1794-IM8 1794-IR8 1794-IRT8 1794-IT8 1794-IV16 1794-IV32 1794-OA16
| 1756-HSC 1756-IA16 1756-IA16I 1756-IA32 1756-IB16 1756-IB16D 1756-IB16I 1756-IB32
|
1756-CN2 1756-CN2R 1756-CNB 1756-CNBR 1756-DHRIO 1756-DNB 1756-EN2T 1756-EN2TR 1756-EN3TR 1756-ENBT 1756-ENET 1756-EWEB | 1756-IR6I 1756-IR12 1756-IRT8I 1756-IT6I2 1756-IM16 1756-L61 1756-L62 1756-L63 1756-L64 1756-L65 1756-L71 1756-L71S
| 1756-M03SE 1756-M08SE 1756-M16SE 1756-N2 1756-OA16 1756-OA16I 1756-OB16D 1756-OB16E 1756-OB16I 1756-OB32 1756-OF4 1756-OF8
| 1756-BATA 1756-CNB 1756-IC16 1756-IB16 1756-IB32 1756-IF16 1756-IR61 1734-ACNR 1734-ADN 1734-AENT 1734-AENTR 1734-APB
|
1756-TBS6H 1756-TBSH 1757-SRM 1746-N2 1746-NI16I 1746-NI4
| 1756-PA75R 1756-PB72 1756-PB75 1756-RM 1756-IB16 1746-IV32
| 1756-OF8I 1756-OW16I 1756-PA72 1756-PA75 1794-OA8 1794-OA8I
| 1746-IA16 1746-IB16 1746-IB32 1746-IM16 1746-IO12DC 1746-ITB16 |
输出模块 1794-VHSC AB罗克韦尔 维护方便
引言
混合方法是一种常用的计算气动声学方法。该方法认为气动声源与流动的湍流相关,但声场对流场没有反作用。该方法本质上是一个两步求解方案。步,使用URANS、LES或DES求解非定常流场。第二步,从CFD结果中提取声源并求解声音传播。
轴流风扇产生的声音具有两个独立且独特的特征:线谱音调和宽频带。混合方法(使用Lighthill类比和对整个信号进行一次离散傅里叶变换)可以预测宽频带信号,但通常会得到不切实际的高波动噪声结果。论文中提出了一种针对风扇噪声问题的一种新的组合方法。与传统的混合方法不同,该方法具有准确捕获线谱音调噪声并可获得平滑的宽频带噪声曲线的优点。
数值计算
进行非稳态CFD仿真进行。计算域由静止场和包围风扇的旋转域组成,如下图1所示。该模型捕捉了所有细节,例如风扇孔口、风扇护罩、线圈和百叶窗。在本研究中,线圈被建模为多孔区域,并应用滑动网格方法来计算Actran气动声学模拟所需的非定常CFD结果。旋转域(风扇)的旋转频率为1118RPM。例子中的时间步长为0.0005s。此次模拟,0.8秒的总时间确保所求小频率远小于37.2Hz(叶片通过频率)。
图1: 旋转域包围风扇叶片,静止域包含流动障碍物和多孔线圈
Lighthill声类比有两种源的计算方式,分别是在域的整个体积上和在源的表面上执行源的计算。如果采用前一种方法,源计算需要整个域上的CFD信息,但在后一种方法中,我们只需要在单个表面而不是体积上读取速度信息(以及不可压缩模拟情况下的密度),从文件管理的角度来看,这是一个很大的优势。本研究中风扇作为唯一的主要声源,为了加速CFD模拟仅导出包围风扇的表面,即转子-定子界面静态侧的CFD数据。CFD求解器采用480个核心的仿真时间接近40小时。耗时的部分是在每个时间步下写入数据这个步骤,这会减慢求解速度。
本例基于Actran2021.1,采用Lighthill面源方法,将声源映射到声学网格上,并完成时域气动声源转成频域的计算。这项研究的新颖之处在于这一步,其中采用两个互补的离散傅里叶变换(DFT)设置来jingque计算线谱音调和宽频噪声,避免了由于采样时间有限而在高频下出现不切实际的声压级波动:
0对于叶片通过频率(BPF)及其谐波引起的线谱音调噪声,使用小二乘法在整个采样时间内定义并完成个DFT。该方法强制提取用户设置的频率。在本研究中,设置为从BPF开始并提取BPF高达1000Hz的每个谐波,2对于宽频带噪声,时域数据样本分解为多个较小的样本(多重离散傅里叶变换),这些样本彼此重叠50%,并对每个样本应用Hanning窗以平滑每个子样本之间的过渡。在本研究中,原始时域数据被分为78个重叠样本,每个样本的持续时间为0.02秒,正好对应50个CFD时间步长。子采样持续时间为0.02s,小频率和频率步长固定为50HZ。选择这些参数是为了获得不包含BPF或其谐波的频率列表,仅提取宽频带噪声的结果。此方法的缺点是没有对CFD的全部结果进行利用。
通过上面的两个步骤,便获得了两组气动噪声:D一个DFT得到BPF及其谐波的噪声
2多重DFT方法得到的宽频带噪声。使用两组互补的结果,并使用脚本进行合并,就可以获得组合气动声学仿真的总体频率响应,如图2所示。
图2: 音调和宽频带结果相结合以获得模拟的频率响应
结果分析
使用A计权法和Hanning窗,以25600[Hz]的采样率和1[Hz]的频率分辨率在多个位置记录持续一分钟的声压级。使用快速傅里叶变换来获得频域数据。本研究中的接收器距离设备56英寸,距离地面68英寸,如图3。
图3:接收器相对于装置的放置示意图
下图给出了本研究的新的方法(New Method)、实验测试和使用Lighthill类比的传统混合方法(HybridMethod)计算结果之间的对比。如下所示,新方法在解决宽频带噪声方面更加成功,但它高估了较高频率下线谱音调噪声的贡献量。
图4:使用Lighthill类比的传统混合方法(蓝色)、新组合方法(红色)与测试方法(绿色)的SPL比较图
下表了三个数据集的声压级。混合方法低估了实际SPL测量值。混合方法频谱中SPL值普遍较低。而新方法预测的宽频带信息与测试数据更为接近,较传统混合方法有显著改善。但在高于五次谐波的频率后,该方法高估了BPF下的噪声值(188[Hz]),这导致上表中报告的OASPL值更高。
输出模块 1794-VHSC AB罗克韦尔 维护方便