该电站原循环水控制系统采用循环水控制室手动控制。随着生产运行水平的不断**,原控制系统难以达到现代化生产运行的要求。为了**整个系统的运行水平,完善联锁保护控制功能,**运行人员工作效率,实现现代化生产与管理水平的高标准、高要求,我们对原循环水系统控制进行了技术改造。
循环水控制系统总体改造设计方案
该电站循环水系统共设有四台循环水泵。每台机组有A、B两台循环水泵,均采用母管制供水,双泵并联,入口联通,互为备用,如图1所示。
图1:电站循环水系统图。 系统主要对循环水泵、滤网及其出口的蝶阀进行控制,其I/O点数为300多点,要求实现数据采集、程序控制等功能,电站控制室内保留少量的后备仪表和主要的操作开关,并将数据通过光缆传送至操作员站。能实现通过CRT对循环水系统进行控制。系统设有必要的手操开关,当控制系统出现故障时,不影响设备的手动运行。
总体改造内容如下:
(1)根据循环水泵投运、起停及联锁要求将循环水泵控制室相关控制监视及操作信号送入改造后的循环水泵控制系统。
(2)保留原动力柜,系统只接受电源掉闸信号。
(3)所有泵、滤网等起停开关均设计在操作员站人机界面上,在电站集控室保留部分重要操作开关。
(4)在循环水系统控制室及现场水泵房安装摄像设备,以监视设备运行状况,并将视频信号送入工程师站和操作员站中。
(5)所有开关量与模拟量信号通过可编程控制器送入工程师站,并通过光缆及以太网将数据传输到操作员站。
系统选型及特点
为了满足上面提到的循环水控制系统的设计要求,我们选用罗克韦尔自动化产品A-BSLC 500可编程控制器(PLC)和研华公司IPC-610工控机(IPC)构成的自控系统,再配以先进的A-BRSView32组态软件来实现循环水控制系统的各项功能。
可编程控制器(PLC)是专为工业环境下应用而设计的工业控制计算机,已经成为电气控制系统中应用*为广泛的核心装置,它不仅能实现复杂的逻辑控制,还能完成各种顺序或定时的闭环控制功能,并且抗干扰能力强、可靠性高、稳定性好、体积小,能在恶劣环境下长时间、不间断运行,且编程简单,维护方便,并配有各类通讯接口与模块处理,可方便各级连接。
在当前先进的控制系统产品中,罗克韦尔自动化的可编程控制器技术已相当成熟,从硬件的可靠性、稳定性及软件的易操作性等各方面综合评定,也符合循环水系统改造的各项要求。更为我们所需要的是SLC500系列处理器内置了不同通讯接口,提供多种控制器联网方式选择,可构成不同要求的工业监控网络,并且还提供了与各类“智能"设备的现场总线接口。*终,使控制系统将参数检测、程序控制、显示报警、监控管理等融为一体,通过计算机处理、网络数据共享等技术手段,实现系统的集中管理,以满足系统运行现代化的要求,**其安全性和效率。
系统功能
循环水控制系统主要由数据采集及监视(DAS)和逻辑控制两部分组成。
DAS主要完成数据一览、组显示、点显示、实时趋势、历史趋势、流程图、报警一览、报警历史、操作说明、报表打印等功能。各种功能均可通过主菜单选择进入,并分级子菜单方式进行选用操作,大部分功能有热键调用,相关画面上下关联操作。
控制系统主要通过上位机的软手操实现对阀门和泵的控制,并在程序中实现联锁功能。控制过程分为:
(1)开循环水泵前,先打开蝶阀至30%,起泵,循环水泵开起之后再对蝶阀进行调节;关循环水泵时,先关蝶阀至30%,停泵,循环水泵停运后再将蝶阀关闭。
(2) 其他联锁保护功能。
(3) 有关设备的启停控制。
结论
本文讨论了基于可编程控制器的电站循环水控制系统的设计与实现,充分发挥了可编程控制器配置灵活、控制可靠、编程方便和可现场调试的优点,使整个系统的稳定性有了可靠保障。该控制系统已通过静态与动态联锁试验及试运过程,在实际应用中达到了改造设计要求,实现了预期目标,为电站的安全经济运行提供了保障。我们认为在相关项目改造中值得推广及应用。
一般规定城市管网的水压只保证6层以下楼房的用水,其余上部各层均须“**"水压才能满足用水要求。以前大多采用传统的水塔、高位水箱,或气压罐式增压设备,但它们都必须由水泵以高出实际用水高度的压力来“**"水量,其结果增大了水泵的轴功率和能量损耗。
自从通用变频器问世以来,变频调速技术在各个领域得到了广泛的应用。变频调速恒压供水设备以其节能、安全、高品质的供水质量等优点,使我国供水行业的技术装备水平从90年代初开始经历了一次飞跃。恒压供水调速系统实现水泵电机无级调速,依据用水量的变化自动调节系统的运行参数,在用水量的变化自动调节系统的运行参数,在用水量发生变化时保持水压恒定以满足用水要求,是当今*、合理的节能型供水系统。在实际应用中得到了很大的发展。随着电力电子技术的飞速发展,变频器的功能也越来越强。充分利用变频器内置的各种功能,对合理设计变频调速恒压供水设备,降低成本,保证产品质量等方面有着非常重要的意义。
一、变频恒压供水系统的构成及原理
变频恒压供水控制系统通过测到的管网压力,经变频器的内置PID调节器运算后,调节输出频率,实现管网的恒压供水。变频器的频率超限信号(一般可作为管网压力极限信号)可适时通知PLC进行变频泵逻辑切换。为防止水锤现象的产生,泵的启停将联动其出口阀门。
系统工作原理间图如下所示。假设整个系统由四台水泵,一台变频器,一台PLC和一个压力变送器及若干辅助部件构成。各部分功能如下:安装于供水管道上的压力变送器将管网压力转换成1—5伏的电信号;变频调速器用于调节水泵转速以调节**;PLC用于逻辑切换。