6GK7243-1GX00-0XE0接线图形
一 系统概述
某造纸厂生产线1600纸机自84年投入使用,每年都创造着良好的经济效益,特别是自从96年以来通过一系列的改造(如二次涂布的改造、二组烘缸提高干燥能力的改造、上网绝干量控制的改造以及新增3米大缸的改造)之后,其产质量已得到了飞跃的提高,产量由过去的年产1.1万吨增加到1.7万吨,质量也今非昔比。随着产量的提高,纸机暴露出设计车速较低的问题,生产车速已经达到传动系统的高设计车速75米/分,并且原来的直流总轴传动方式表现出来的速度慢、传动效率低、耗能高、控制方式落后、维护困难等缺点,大大制约了纸厂的发展。为了使产品在激烈的市场竞争中立于不败之地,决定通过改变纸机的传动方式,以提高纸机的生产车速,扩大产量,提高生产效率,减少设备故障和设备维护成本,以创造更大效益。
二 系统要求
原有纸机采用单直流电机总轴传动,通过机械分配转速的方式,如下图所示。由于在生产过程中机械磨损、皮带的打滑等因素,造成速度匹配失调,容易形成断纸、厚薄不均等现象。由于现场高温潮湿,使直流电机维护量增加。为了优化产品质量,提高劳动生产率,取消直流电机及其动力的机械传动部分,在每一个传动分部安装交流电机,采用交流分部传动方式。

在这次改造中我们采用了西门子公司的交流传动控制系统来实现,通过先进的控制方式,方便的人机交互系统,实现生产的全自动化,改造的基本目标如下:
1. 提高生产车速:纸机的车速由原来的高75米/分提高至125米/分。
2. 操作方便:由于采用了人机接口,可以直观的了解设备运行的参数及状况,操作简单,便于调试。
3.节能:由于弃用了原机械传动系统,大大降低了机械损耗,由于交流变频传动系统在运行时一部分变频器处于发电状态,节省了电能,初步估计比原系统节电40%左右。
4.可靠性高:由于弃用了机构复杂的机械传动系统,提高了系统的可靠性,节约了维护的费用,简化了维护的过程。
5. 产品质量的提高:避免了直流电机的电shuafen尘对纸张质量的影响,各部分的负荷控制和传动的管理比较方便,便于生产过程的自动控制和调整,降低维护费用和节省劳动力。
三 系统配置与功能实现
1.系统结构如下图所示:

2.系统原理概述:
通过交流变频器控制每个传动电机的转动速度,经过减速箱传递给各个部分的传动轴,电机的转速通过光电编码器反馈回变频器,通过矢量运算,变频器能够确定和控制转矩和磁通的电流分量,从而获得同直流传动相媲美的动态特性。上位控制系统通过总线的通讯方式控制每一台电机的转速,并根据工艺要求实现全线的速度同步、张力控制和加减速控制等,实现整个生产过程的监视与参数调节。
3.设备组成:
交流传动系统采用西门子MasterDrives全数字变频调速系统,实现高精度的矢量控制方式。整个系统采用公用直流母线工作方式,由一台整流单元,23台逆变单元等构成。传动电机采用标准4极电机,增量型编码器作为速度反馈装置。每台逆变单元中安装现场总线控制卡CBP,可将调速装置中的各种工作状态和工作参数传送给上级控制系统西门子S7-300PLC,实现全线高精度的速度同步。整流单元将三相380V的交流电转换成540V的直流电供给逆变器,当系统处于制动状态时,可以通过制动单元制动。
四 使用效果分析
纸机传动改造工程自筹备开始,在短短的3个月内就完成了由设计、采购到安装调试的全过程。在停机改造期间,我们克服了种种困难,加班加点使新的传动系统按时完成并进行了连续72小时无故障运行的测试,其各项指针均达到了设计目标和要求。主要表现在:
1.系统调速精度高,性能安全、可靠、稳定。
由于系统的性能提高,操作监测方便,操作人员在引纸时的断纸现象大为减少,并且改变了过去因车速不稳定而不能解决的问题:在底层先引好纸后再上面浆,这就大大减少了生产过程中面浆的损耗,节约了生产材料。
2.切纸机的精度大为改善
切纸机的长刀过去采用的是机械调速方式,当生产中需要改变纸的分切长度时,操作人员就要手动调节长刀的机械传动比,这种调节方式精度差,调刀时间长,这次改造中我们运用PLC来自动计算切纸长度与长刀电机的转速关系,通过控制长刀电机的转速,达到分切长度准确、调刀方便快捷的功能,其分切精度由过去的±0.2%提高到±0.1%,而调节时间由过去的10分钟减少到现在的30秒,各项指标创造了国内同类切纸机的新记录。
3.节能效果明显
纸机交流分布传动的改造的顺利完成,为企业带来了明显的经济效益,并为公司的长久发展打下了坚定的基础
PAC(可编程自动控制器)应运行而生
当今,在设计与建立控制系统放时,工程师们总是希望能使用比较少的设备来实现更多的功能。尤为当今,他们需要的控制系统不仅能处理数字I/O和运动,还可以集成用于自动化监控和测试的视觉功能和模块化仪器,还必须能实时地处理控制算法和分析任务,并把数据传送回企业。这就是说要求产品能结合的功能和可靠性对于这复杂的应用,仅单靠PLC或PC的不全面解决方案是困难的,这是什么原因?因基于PC的工业控制有以下弱点:
■稳定性-通用的操作系统常常不够稳定并且生产线会受到系统崩溃和无法预料的重启的影响。
■可靠性-由于磁性硬盘的旋转和有像电源这样的部件,其坚固程度达不到工业标准,PC容易发生故障。
■不熟悉的编程环境-当系统停止时,工厂的操作人员需要恢复系统。对于梯形逻辑,操作人员能知道采用人工方法启动一个线圈或者补充代码来快速恢复一个系统。使用PC系统,操作人员需要学习新工具。
图1:为具有PC软件功能和PLC可靠性功能的新兴可编程自动控制器PAC 示意图
使PLC增加视觉、运动、仪器和分析功能等全方位的自动化技术,显而易见是望尘莫及。必须希望拥有PC的功能和PLC(可编程控制器)的可靠性的佳方案,则可编程自动控制器(PAC-ProgrammableAutomationController)就是这样的平台,它能佳结合PC和PLC两者的优势(见图1所示),它提供了开放的工业标准,可扩展的领域功能,一个通用的开发平台和一些性能。这是当今设计与建立控制系统发展的需要,属工业自动化领域中比较完善的新兴控制器。
那"PAC是什么?"PAC这一术语,它定义了一种新类型的控制器.该控制器结合了PC的处理器、RAM和软件的优势,以及PLC固有的可靠性、坚固性和分布特性。PAC采用现有的商业化技术(COTS),非常适合于工业化环境,它具有可伸缩性,易于维护和具有较低的发生故障时间等特性。
关于PAC的平台
快速增长的PAC平台是基于PXI。由于PXI结合了PCI总线的电路特性和CompactPCI坚固的欧罗卡机械结构,这种结构已在工业环境中成功使用了许多年,当今NI,Chroma,LeCroy和JTAG等供应商现在可提供1,000多种独特的I/O模块,包括模拟I/O、数字I/O、视觉、运动和高精度数据采集。典型的可提供以下四种PAC硬件平台。
■PXl对工业化PC做了改善,具有实时OS,标准的散热,可选的不旋转固态硬盘和内置的模块间同步。PXl标准要求所有的机箱能为每个模块插槽提供25W的空气流制冷,这样甚至在使用高功率继电器,高速PXl或CompactPCI卡时也不会使工作系统过热或者缩短寿命。PXl也提供了能严格同步各个模块的功能,工程师可以为高速控制应用设计运动,视觉和I/O系统,这些应用包括产品包装和半导体器件处理。
■CompactFieldPoint使用工业级的部件来抗强冲击和振动,其工作温度范围为-40℃到70℃。它也采用传导式制冷来代替旋转风扇,由于不使用活动部件而提高了可靠性。由于有运行实时OS的浮点处理器,CompactFieldPoint系统具有PC功能,用于记录数据的CompactFlash驱动和用于通信的以太网口。
■CompactVision系统是为机器视觉而专门设计的坚固的控制器。它使用,IEEE标准1394FireWire接口,可以在视觉应用中和16台摄像机通信。CompactVision系统也采用不活动的部件和传导式制冷,您可以把系统固定在机器附近。它提供29个内置的数字I/O通路,这些通路可由LabVlEWRT或使用LabVlEWFPGA的嵌入式FPGA来直接控制。
■CompactRIO是新型的可重复设置的嵌入式系统,它基于LabVlEWFPGA和LabVlEW。实时技术.CompactRIO系统采用具有3百万门的FPGA芯片来控制模块化的数字和模拟I/O。这些FPGA芯片可以运行嵌入在芯片里的代码,它的数字循环的速率高达MHz,模拟循环的速率为150kHz。FPGA可以把信息传回到运行LabVlEWRT的浮点处理器以进行计算和数据记录和通信。由于有金属外壳和传导式制冷,该控制器非常适合用于严酷的环境。
PAC定义的几种特征和性能(见图2)。
图2: 为PAC特征性能图解示意
■供通用发展平台和单一数据库,以满是多领域自动化系统设计和集成的的通用开发平台;
■一个轻便的控制引擎,可以实现多领域的功能包括:逻辑控制、过程控制、运动控制和人机界面等,为统一平台;
■允许用户根据系统实施的要求在同一平台上运多个不同功能的应用程序,井根据控制系统的设计要求,在各程序间进行系统资源的分配;
■采用开放的模块化的硬件架构以实现不同功能的自由组合与搭配,减少系统升级带来的开销;
■支持IEC 611 58现场总线规范,可以实现基于场总线的高度分散性的工厂自动化环境;
■支持事实上的工业以太网标准,可以与工厂的EMS,ERP系统轻易集成;
■对于网络协议、语言等,使用既定事实标准来保证多供应商网络的数据交换。
PAC可执行较多的任务
■实时的振动分析、图像处理.运动控制和CAN;
■执行自动调节的PID控制,或可调增益的PID控制.模糊逻辑;
■使用内置Web服务器、FTP服务器和e-mail功能进行通讯。
PAC应用举例
用PAC结合NI PXI和图形软件LabVIEWRT(实时)实现钢条高精度监控和高可靠闭环控制系统-自动化处理设计方案。.
项目设计
由于金属工业系统需要冷轧钢厂生产出统一厚度的钢条(以钢卷的形式),为此这些轧钢厂需要由对生产的钢条规格进行监控的高可靠闭环控制系统.这就是本PAC应用的设计任务
系统技术要求
该系统能进行高精度监测和控制并以更快的响应时间(比传统PLC);可保证每周七天、每天24小时连续的高可靠工作,并且大限度地减少人工操作。
系统设计方案
钢条规格的高精度监测
由于NI基于PXI和实时的PAC平台非常适合用于高精度监测,故可利用NI 公司的图形软LabVlEWRT(实时)和PXI硬件开发出基于NI可编程自动控制器(PAC)的规格监测和控制系统.用PAC控制系统实时地监测钢片的厚度并以快速而确定的响应时间控制计量仪。
■先述该PAC控制系统的工作过程:
PAC控制系统有两个轧辊,一个是固定的,另一个可移动,它们和液压气缸相连。可移动轧辊根据输入信号对钢片加压以保证钢片有合适的厚度。
通过对各种可用于这种复杂应用的平台比较,选择了NI PAC平台和图形软件LabVlEW RT(实时)及PXl硬件。利用NI的PAC产品,不仅缩短了开发时间,也为我们的客户降低了成本。
■系统的信号捡测分别用厚度计量仪与位移传感器
该控制系统采用厚度计量仪来测量钢片的厚度,即,它以微米级的精度测量距定位点的偏差并形成模拟信号输入到PXI硬件。根据液压气缸的压力形成模拟电压信号。
位移传感器确定了液压气缸的位置并向控制器提供与金属计量仪(或两轧辊之间间距)相关联的数字输入信号。旋转编码器(TRD-K)固定在转动的升降辊上,它显示钢条被轧出的速度,其示意见图3所示。通过利用各种传感器接收数据,运行于PXI控制器的LabVlEWRT对输入做出响应并生成改变液压压力的输出信号,从而控制钢条的规格。无论是厚度计量仪与位移传感器均可采用光纤传感器来实施。
图4为PAC用于钢条(或扳材)规格进行监控的高可靠闭环控制系统-自动化处理的设计方案框图.从图中看出该设计方案中选择了气压、位移、厚度传感器及编码器等信号传感捡测部分、图形软件LabVlEWRT(实时)、PXl/CompactPCI多功能高精度采集卡、可编程自动控制器(PAC)。
可靠控制系统的实现-多功能高精度采集、计数器收和数字I/O模块的使用
利用运行LabVlEW RT(实时)的PXI控制来实现控制系统。该PXI系统采用三种不同的模块(见图4所示)。我们使用NIPXI-6070多功能高精度采集卡来完成模拟输入或输出厚度和压力数据。用NIPXI-6608计数器/定时器卡测量编码器的信号并确定轧辊速度(示意与图3相同);使用NIPXI-6711模拟输出模块控制伺服阀来改变液压气缸的位置,从而控制钢条的规格或厚度.又利用NIPXI-6527工业数字I/O模块(含24条隔离光隔离输入线和24条隔离固态继电器输出线)实现一个常备的按钮式控制扳,来解决实时系统和主机发生连接中断这样意外事故的这一难题.这就是利用PXI和LabVIEW开发出了可靠的控制系统
响应时间的大大缩短
与传统的仪器和PLC相比,我们利用NIPAC平台提高了灵活性,降低了响应时间并改善了产品质量。众所周知对于基于PLC的典型系统,它的控制循环的速率为100到500ms,而使用基于PXI的控制系统,我们把该系统的循环时间降低到10ms,从而提高了我们输出的质量。也利用PXI背板对测量进行同步。后,由于利用了单一的开发环境和灵活的硬件,我们把系统的响应时间降低为六分之一,从而减少了项目所有者的综合成本。
需要说明的是该PAC应用的钢条高精度监控和高可靠闭环控制系统,同样也可适用于板材行业(或建筑行业)。
结论
由于PAC能为您增加所需的PC功能以用于控制,实时分析或连接企业数据库,保持了PLC的可靠性。如果您不只是需要集成数字I/O和运动控制,或者需要更快的计算机处理能力的话,PAC可能是非常好的选择。为此,当今的工程师除了PLC控制外,其PAC不失为是一种佳选择,它正占领自动化领域.而PAC概念将在当今和未来的工厂自功化中发挥重要的作用
本文通过对轮胎成型机工艺及控制理论的研究。设计了有三菱PLC控制器,VVVF和变频调速电机组成的驱动控制系统、利用PLC控制器对各阶段时间进行设置,采用开环变频调速控制成型机,提高了自动化程度,实现了工艺的优化、稳定和可靠运行,针对设计中的几个关键问题提供了理论上的说明,有助于提高轮胎成型机产业的技术更新和发展。通过实际应用表明系统能满足成型机生产的需要并具有技术先进性和价格低廉等优点。本设计有利于实现工业现场的管控一体化,在工业控制的发展中有着广阔的应用前景。
前言
近几年来,我国的汽车生产企业的数量持续快速增长,极大地促进了齿轮、联轴器相关设备的发展,在齿轮和联轴器压成型工艺中,轮胎装置多采用手动给工件、吹风的生产工艺,生产效率和安全系数比较差。
子午结构轮胎的出现是轮胎工业的一次重大技术革命,是轮胎更新换代的产品。子午线轮胎比斜交轮胎有许多优越性,如磨耗性能提高60~120%;滚动阻力比斜交轮胎低30~40%;可节油6~8%;侧向力可提高50%牵引力及刹车能力可以提高10~20%;径向弹性率比斜交胎约低18%;径向弹性率小,可提高舒适性;高速性能比斜交轮胎高;噪音比斜交轮胎小;如采用钢丝带束层可提高耐机械性能。这些优越性能主要是两者轮胎的结构不同。子午线轮胎的优越性能取决于子午线轮胎的坚固带束层胎冠和柔软的胎体。子午线轮胎的力学性能,特别是带束层和胎体的关系比较复杂,而改善胎冠带束层的坚固性会影响到子午线轮胎的操纵性能,不象斜交轮胎在改善胎冠缓冲层的角度和密度时不会影响斜交轮胎的性能,只有改变斜交胎体的密度和角度时,才会影响轮胎质量。子午线轮胎的带束层和胎体部分,各有自己的作用。子午线轮胎的带束层起决定性的作用,带束层会影响到子午线轮胎的侧向力、高速性能、耐磨性能等。而胎体会影响到轮胎的舒适性和牵引力。改变胎体的角度90°至85°会改变其均匀性能。由于子午线轮胎的径向坚固性比带束层高,子午线轮胎的力学特性和斜交胎不同。子午线轮胎的结构特性引起了汽车工业的关注,特别是子午线轮胎的侧向力的提高,增加了汽车的操纵稳定性,满足汽车高速度的要求。在国际上,子午线轮胎发展是很快的。各种类型的机动车都在使用子午线结构的轮胎,如工程车、拖拉机、轿车、轻、重型载重车等。在20世纪80年代,法国航空飞机也采用了子午线轮胎。
针对用户群的实际情况,从高可靠性和高性价比方面考虑,开发一种由PLC控制器、变频调速异步电动机和减速器组成,采用数控变频器调速技术的调速系统,不仅可以完成牵引工艺的流程,系统还便于维护以及调速。这种方案和采用晶体管整流器和直流电动机,加上测速发电机构成闭环直流调速驱动的方案比较,在性能与价格相当的情况下,具有高可靠性、节约能量、维护工作量少的优点。与采用工业计算机控制的交流伺服电动机方案相比较同样采用上述优点,并且价格低廉,易于开拓市场。
1 轮胎成型机基本结构
轮胎成型机的结构形式很多,本文中的轮胎成型机是2800工程轮胎成型机。结构主要由头座、尾座、压辊、扣圈盘、反包装置、帘布筒扩张器、上帘布筒装置、气压控制装置、油液压电气装置、电气控制装置等组成。各部分的功能和作用分别如下:
头座:是一个用来安装主动力装置,成型鼓扩张和折叠装置的支架。头座支撑着下列装置:主轴、扣圈盘、右反包装置、成型鼓的扩张和收缩装置等。主要作用是专门用来缩小和扩张成型鼓,完成主轴的旋转和成型机头的调距功能。
尾座装置:尾座和头座相对。个安装在成型鼓的一边,尾座上的轴支撑头座上的主轴,扣圈盘在轴上来回滑动。
压辊:压辊装置由两个胎面压辊,两个钢丝压辊组成。两边的胎面压辊和钢丝圈压辊分别装在两边的滑架上。
扣圈盘:扣圈盘是由头座的右边和尾座的左边的元件所组成。这些装置由一对气缸启动。右边的装置由安装在成型鼓轴上的轴套引导;左边的装置由尾座引导,以保证扣圈盘与成型鼓之间中心位置的jingque性。
拉出环装置:拉出环由左右两边的设备组成,用来反包帘布筒。右边的装置装在轴套上,轴套是由主轴引导的,由两个液压缸控制装置前进或后退,压缩空气控制它的扩张。
帘布扩张装置:帘布扩张器由箱体、主轴、气缸、伞形撑布架等组成,是用来扩张帘布筒,以便装上成型鼓的装置,其作用是将套入的帘布筒扩撑展开送到成型鼓左侧,并配合上牵引装置将布筒导入成型鼓。机械手的扩张和折叠由电机驱动,由限位开关控制。
气动装置:这些装置包括电磁阀、调节器、空气过滤器、润滑器等。
油液压装置:该装置由泵、油箱、溢流阀等组成。
电气控制设备:主要由控制系统和驱动系统组成的。电气设备如下:控制盘、主操作盘、尾座操作箱。帘布筒扩张器操作箱、上帘布筒操作箱。
2电气控制系统设计
2.1电气总体方案设计
本文对生产轮胎的成型机控制系统进行了自动化控制设计与研究,开发一种基于触摸屏监控,PLC控制和VVVF驱动控制的监控系统,即在完成自动控制的基础上利用触摸屏开发软件设计出上位机监控系统,实现对各个下位机参数和生产情况的实时监控和管理以及动态数据的实时存储。该系统实现了生产工艺控制要求,并对事后分析生产情况提供手资料。
该系统由以下几个部分组成:以触摸屏为载体的监控系统程序、硬件控制电路间的通信模块、PLC控制器、二极管显示电路、按键模块等。以触摸屏为载体的监控程序通过实时现场数据实时采集,并对数据进行分析,完成监控、数据存储分析、重要参数的设定、显示和打印各种数据报表。整个控制系统可以分为触摸屏监控部分和PLC控制VVVF驱动控制部分,其结构如图1所示。
图1 电气控制方案设计
2.2 PLC驱动控制模块设计
以PLC控制器+变频器+变频电机组成对电机的驱动控制系统,VVVF驱动控制器结构如图2所示。
PLC控制器控制电机的四种状态的时间来控制变频电机。并可在线调整工艺参数、改变电机速度、频率和间距。
2.3 PLC时间控制要求
根据生产工艺技术与装备对拖动电机的要求,牵引机构在每个周期中速度变化规律包含四个阶段如图3所示。图中v为设定的牵引机速度,t为电机运行时间。
控制流程如下:
设置四段时间T1—正向牵引时间、T2—正向停止时间、T3反向后退时间和T4—反向停止时间;
T1、T2、T3、T4时间再0…99时间独立可调。
电机用变频器进行变频调速;
T1、T2、T3、T4时间可在人机界面上显示,并可在触摸屏上修改;
启动从T1开始,停止在T2进行;
电机的三种状态(正传、反转、停止)可通过三种不同颜色的指示灯;
电机的三种状态(正传、反转、停止)可通过人机界面也能监视;
有正、反向点动控制,点动速度单独可调;
频率调节范围0~100HZ,频率调节精度1HZ。
为了编程的方便,PLC控制器控制结构图如图4所示。
图4 PLC控制器控制结构图
3 PLC与变频器通信
控制系统采用具有两路模拟量输出的FX2N-2DA模块对变频器进行速度控制。模拟量模块选择0~5V输出信号。分别将模块的VOUT1与COM1与变频器相关端子相连。PLC与变频器相连如图5所示。
图5 PLC与变频器接线图
4 结论
本设计采用PLC控制器发送控制信号给变频器来控制电机,采用触摸屏和机械按键控制PLC。触摸屏的操作方便、实时性好,能够直观反映设备的工作状态,减轻工作人员的劳动强度。机械按钮控制可以保证在特殊情况下的运行,从而保证安全生产。本设计在降低能耗、保护资源环境等方面也具有很好的前景。