摘要
论述伺服驱动控制器的实现方法,通过对ARM+FPGA+DSP架构的多CPU控制器的具体分析将其原理和优势展现出来;这种架构控制器系统分工明确,提高了算法的实时性;提高了控制器对外接口EtherCAT的实时性;提高了系统的稳定性。这种架构方案在天津电气科学研究院有限公司的伺服驱动器产品中进行了实验,现场的应用取得了良好的效果,体现出这种技术的现实意义。
伺服驱动器是用来控制伺服电机的一种控制器,一般是通过位置、速度和力矩三种方式对电机进行控制,实现高精度的系统定位。
目前,伺服控制器CPU的架构主要有:
1、单CPU架构ARM(AcornRISCMachine)控制器;
2、单CPU架构DSP(DigitalSignalProcess)控制器;
3、ARM+FPGA+DSP架构的多CPU控制器。
方法3是目前Zui先进的架构,前两种方法都有局限性。方法1和方法2这种单CPU架构的控制器,一个CPU集算法、采集控制、通讯、显示功能于一体,当算法复杂度和实时性要求高时往往会顾此失彼。而方法3的架构中各个CPU的分工明确,ARM负责通信和显示功能,DSP负责算法运算,FPGA负责采集和控制。方法3的技术瓶颈是满足伺服控制器的实时性要求需要几个CPU之间的高速数据通信,如果能够找到一个高速的通信方式完全可以发挥各个CPU的特性,就像一个多核CPU在工作一样。
本研究基于ARM+FPGA+DSP架构,采用并口通信的方法用于几个CPU之间的内部高速通信;伺服驱动器作为伺服系统的一部分还需要和主控器和编码器进行高速通信,来满足整个伺服系统的实时性要求,本架构采用EtherCAT和高速485接口用于控制器和其他设备进行高速通信,描述了系统的原理架构和软件设计架构。
2.1 此架构的控制器中ARM负责通信和显示功能,DSP负责算法运算,FPGA负责采集和控制,如图1所示。FPGA采集相电压、相电流等物理量通过并口传给DSP;ARM通过EtherCAT接收主控制器命令,通过高速485采集码盘的速度和位置等信息,通过并口传给FPGA中转下再传到DSP;DSP中执行伺服控制的算法,利用FPGA和ARM中采集的数据进行计算,把计算结果再通过并口传给FPGA和ARM,由FPGA和ARM进行相关的控制操作。
图1 多 CPU 架构控制器结构图
2.2 此架构控制器中几个CPU之间的双口RAM通信:用双口RAM中各位数据都是并行传送的,它通常是以字节(8位)的整数倍为单位进行数据传输,能完成数据的输入和输出。用双口RAM通信的原理如2所示。用双口RAM通信具有各数据位传输,传输速度快、效率高的特点,多用在实时、快速的场合。
图2 用双口RAM通信原理图
2.3 此架构控制器的对外接口有EtherCAT和高速485。
码盘的接口一般采用485接口,本控制器也采用485的接口,用DMA来实现;伺服控制器与主控制之间的接口有EtherCAT和PROFINET等协议,本控制器采用应用比较广的EtherCAT接口。实时以太网EtherCAT是由倍福开发的一种工业以太网技术。它以高速率、高有效数据利用率、完全符合以太网标准、刷新周期短、同步性能好等优势,在伺服通讯领域中得到越来越多的应用。其原理如图3所示。
图3 EtherCAT报文
3.1控制器ARM的设计
主控制器ARM通过STM32F407芯片完成上节介绍的与FPGA的并口通信、EtherCAT通信、485通信。STM32F407属于高端的32位ARM微控制器,该系列芯片是意法半导体(ST)公司出品,其内核是Cortex-M4。本次设计充分利用其资源,实现了并口通信、therCAT通信、485通信。
图4 FSMC框图